Schullehrplan der gibb Berufsfachschule Bern

für

Laborantin/Laborant mit eidgenössischem Fähigkeitszeugnis (EFZ) Fachrichtung Chemie

Grundlage: Bildungsplan zur Verordnung über die berufliche Grundbildung für Laborantin EFZ/Laborant EFZ, 2023

Erstellung: Marc Witschi, Brigitte Fankhauser, Version 4, Mai 2023

Semesterübersicht: Thematische Inhalte

HKB: a (Planen/Vorbereiten), e (Aufbereiten), f (Anpassen/Entwickeln), g (Organisieren) HKB: b (Durchführen)

Compotor	Anzahl Wochenlektionen								
Semester	1	2	3	4	5	6	7	8	9
1	Laborsicherheit, Einheiten, Wägen, Arbeiten mit Fluiden, Dichtebestimmungen, einfache Gleichungen, Gehaltsangaben, SI-System, Potenzen, Englischer Sprachaufbau / Grammatik			Ordnungssysteme der Materie, Dispersionen trennen, Teil- chenmodell, Energiebilanzen, Aufbau und Modelle der Atome, PSE, Radioaktivität, chemische Bindungen und For- meln					
2				Zwischenmolekulare Kräfte, Lösungen, Feststoffe, Chemische Reaktionen, Säuren/Basen, Optik (Photometrie, Refraktometrie, Polarimetrie)					
3	Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte, Statistik, Berechnungen zur Chromatographie, Englischer Sprachaufbau / Grammatik			OC-Einführung, Kohlenwasserstoffe, aromatische Verbindungen, Extraktionen, Chromatographie (DC, LC, HPLC, GC, gängige Detektoren), Massenspektrometrie (MS, MS/MS, verschiedene Ionenquellen und Analysatoren)					
4	abläufe, Englischer Sprachaufbau / Grammatik Elektrochemi rik (Tempera			ier, Carbonylverbindungen, Carbonsäuren e/Elektrodynamik (Elektrolyse, Galvanik, Potentiometrie), Kaloturmessgeräte, Kalorimeter), Thermische Trennmethoden estillation, Umkristallisation)					
5	Biologische Systeme und Grundprinzipien / Toxikologie / GSU, Vertiefung und Festigung von chemischem Rechnen, Methoden- und Prozessvalidierung, Arbeitsanweisungen, neues Gerät in SOP aufnehmen, Erarbeiten von SOP-Methoden inkl. Anleitungen			Carbonsäurederivate, Organische Stickstoffverbindungen, Isomerie / Stereochemie, Lipide, Kohlenhydrate, Spektroskopie (AAS, OES, RFA, IR, NMR)					
6	mationssicherl und Messmeth	heit, Vergleich	olagen / Datenso ausgewählter T ganisation und onsquellen	echnologien	Proteine, synthetische Polymere, Vertiefung von eigenen Arbeitsmethode Automatisierung / Digitalisierung, QV-Vorbereitungen, Repetition				

Erläuterung der Thematische Inhalte

1. Semester

HKB a, e, f, g:

Laborsicherheit: Persönliche Schutzausrüstung, Laborinfrastruktur, GHS (Abkürzungen, Zielsetzung, Gefahrenpiktogramme und Signalwörter), SDS (Laborarbeit relevanten Informationen recherchieren und interpretieren), Arbeitssicherheit und Unfallverhütung, Brand- und Explosionsschutz, Verhaltensregeln bei Notfällen und Unfällen

Wägen: Fallbeschleunigung, Aufbau und Funktionsweise verschiedener Waagen, wichtige Punkte beim Wägen

Arbeiten mit Fluiden: Oberflächenspannung, Adhäsion und Kohäsion, wichtige Punkte beim Pipettieren, statische und dynamische Druckverhältnisse, Viskosität

Dichtebestimmungen: Pyknometrie, Auftriebsmethode, Aräometer, elektronisch nach Biegeschwingungsprinzip

einfache Gleichungen: Proportionalität / Verhältnisgleichungen, Umformen von einfachen linearen physikalischen/chemischen Gleichungen, Eingabe in Excel und Taschenrechner

Gehaltsangaben: Massenanteil, Massenkonzentration, Stoffmengenkonzentration, Volumenkonzentration, Stoffmengenanteil

SI-System, Potenzen, Einheiten: Masseinheiten, Standardschreibweise und wissenschaftliche Schreibweise (Eingabe in Excel und Taschenrechner), SI-Vorsätze

HKB b:

Ordnungssysteme der Materie: homogen und heterogen Gemische (Suspension, Emulsion, Lösungen, Gemenge, Legierung...), Reinstoffe, Elemente, Säuren/Basen, Lösungsmittel ...

Dispersionen trennen: Filtration, Extraktion, Destillieren, Dünnschichtchromatographie, Zentrifugation

Teilchenmodell: Aggregatzustände (fest, flüssig, gasförmig) Aggregatzustandsänderungen

Energiebilanzen: exo- und endotherme Reaktionen, Energiediagramme, Energieerhaltung (1. Hauptsatz der Thermodynamik), Energiearten

Aufbau und Modelle der Atome: Aussagen des Coulomb-Gesetztes, Eigenschaften von Elektronen, Protonen und Neutronen, Isotope, Atommodel von Bohr, Spektrallinien, Atomorbitale, Valenzelektronen

PSE: Gruppen und Perioden, Ordnungsprinzipien und Gesetzmässigkeiten (Metallcharakter, Oxidationszahlen, Elektronegativität, Atom- und Ionenradien), Edelgaskonfiguration

Radioaktivität: Zerfallsarten, Halbwertszeit, Gefahren und Schutzmassnahmen, Anwendungen (Radiokarbonmethode, innere und äussere Strahlentherapie, Werkstoffprüfung)

chemische Bindungen und Formeln: kovalente Bindung und Moleküle, ionische Bindungen und Salze, Elektronengasmodell und Metalle, koordinative Bindungen und Komplexe, Formeln aus Elementarzusammensetzung berechnen, Summenformel, Strukturformeln

2. Semester

HKB a, e, f, g:

Mischungs- und Verdünnungsrechnungen: Mischungsgleichung und Mischkreuz, berechnen von Gehalt/Konzentration einer verdünnten Lösung aus Stammlösung und umgekehrt

Stöchiometrie: stöchiometrische Faktoren und ev. Überschuss berücksichtigen, erwartete Produktmenge, einzusetzende Eduktmenge, Ausbeute etc. berechnen

einfache Säure/Basen-Titrationen: direkte Titrationen, Titer- und Konzentrationsberechnungen

HKB b:

Zwischenmolekulare Kräfte: London-Kräften, Dipol-Dipol-Kräften und Wasserstoffbrücken, Einfluss der zwischenmolekularen Kräfte auf physikalische Eigenschaften

Lösungen: verdünnte, konzentrierte, gesättigte und übersättigte Lösung, Leitfähigkeit, dynamische Gleichgewicht, Kinetik und Thermodynamik vom Auflösungsprozess in Wasser, Löslichkeiten / Mischbarkeit basierend auf zwischenmolekularen Kräften und elutropen Reihe, Volumenkontraktion, Löslichkeit von Gasen

Feststoffe: Aufbau, chemische und physikalische Eigenschaften von Glas, Keramik, Metall, unterschiedlichen Kunststoffen und anderen gängigen Labormaterialien

Chemische Reaktionen: Bindungsenergien, Enthalpie, Entropie, chemisches Gleichgewicht und Einflussgrössen, Funktionsweise eines Katalysators, Prinzip vom kleinsten Zwang und Einflussgrössen

Säuren/Base: Säure-Base-Konzept nach Brønsted-Lowry, Ampholyten, konjugierte Säure-Base-Paare, K_A und pK_A, Definition des pH-Werts, einfache Berechnungen des pH-Werts, Wirkungsweise und Anwendung von Puffern und Indikatoren, Prinzip der Säure-Base-Titration, Methoden zur Endpunktbestimmung, Aussagen von Titrationskurven

Optik: Aufbau und Funktionsweise eines Photometers, Zusammenhang von Absorption, Transmission, Extinktion, Gesetz von Lambert-Beer, einfache Berechnungen, Farbenlehre, Lichtbrechung, Aufbau und Funktionsweise eines Refraktometers, Polarisation, Aufbau und Funktionsweise eines Polarimeters

3. Semester

HKB a, e, f, g:

Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte: Energiefluss, Kohlenstoff- und Stickstoff- und Wasserkreislauf, Einfluss von Chemikalien auf Kreisläufe, Schadstoffe, Recycling

Statistik: Präzision (Wiederholpräzision, Laborpräzision und Vergleichspräzision), Richtigkeit und Genauigkeit, Mittelwert, Standardabweichung, relative Standardabweichung, Korrelationskoeffizienten, Bestimmtheitsmass, Steigung und Y-Achsenabschnitt einer Regressionsgerade mit Excel und dem Taschenrechner berechnen, Daten mit Diagrammen in Excel darstellen, Normalverteilung, zufälligen, systematischen und groben Abweichungen / Fehlern, Ausreissertest zum Überprüfen der Signifikanz, Diagramme in Excel nach vorgegeben Kriterien formatieren

Berechnungen zur Chromatographie: Responsefaktor, Auflösung, Gehaltsabrechnungen mit internem und externem Standard / Regressionsgerade

HKB b:

OC-Einführung: Hybridisierung des Kohlenstoffs, Systematik organischer Verbindungen, Nomenklatur nach IUPAC

Kohlenwasserstoffe: Alkane und Cycloalkane (Nomenklatur/Physik. Eigenschaften, Gewinnung aus Erdöl, radikalische Substitution), Alkene (Nomenklatur/Physik. Eigenschaften, Isomerie, Saytzew- und Markownikow-Regeln, Partielle Hydrierung von Alkinen, Elimination, Addition, Substitution, Ozonspaltung), Alkine (Nomenklatur/Physik. Eigenschaften, Elimination, Addition), Halogenkohlenwasserstoffe (Nomenklatur/Physik. Eigenschaften, Radikale Substitution von Alkanen, Addition von HX oder X₂ an Alkene, Substitution von Alkoholen mit HX), Polyene (isolierte/kumulierte/konjugierte Doppelbindungen)

aromatische Verbindungen: Arene (Nomenklatur/Physik. Eigenschaften, Chemische Eigenschaften, Induktive und mesomere Effekte, elektrophile Substitution), Phenole (Nomenklatur/Physik. Eigenschaften, Chemische Eigenschaften, elektrophile Substitution, Williamsonsche Ethersynthese)

Extraktionen: kontinuierliche und diskontinuierliche Extraktion

Chromatographie: Anwendungsgebiete, Prinzip, Funktionsweise und Vergleich von DC, (Flash-)LC, IC, HPLC, GC, Injektionsmöglichkeiten, Einfluss unterschiedlicher stationärer und mobiler Phasen, Detektoren und Detektionsmöglichkeiten (DC: UV-Kammer, Derivatisierung), LC/HPLC: UV-VIS (VWD, MWD, DAD), RI, elektroanalytische Detektoren (Leitfähigkeit und amperometrisch), MS, GC: (FID, NPD, WLD, ECD, MS), Parameter von Chromatogrammen, Massnahmen zur Optimierung der Trennung / Verbesserung der Auflösung

Massenspektrometrie: Anwendungsgebiete, Prinzip, Funktionsweise und Vergleich von Ionisierungsmethoden, Analysatoren (Sektorfeld, Quadrupol, TOF und Ionenfalle) und Tandemgeräten (MS/MS), einfache Spektren interpretieren und mögliche Fragmente angeben

4. Semester

HKB a, e, f, g:

Massanalyse: Mehrsprungtitrationen, Rücktitrationen, Säuren/Basen, Redox (Iodometrie und Manganometrie), komplexometrisch

Gasrechnungen: Berechnung von Gasmengen, Volumenanteilen, Massenanteilen, Ausbeute bei Reaktionen ...

Qualitätswesen: Qualitätskontrolle, Qualitätssicherung, ISO9001, ISO17025, GMP, GLP, SOP

Arbeitsabläufe: Arbeitsschritte, Infrastruktur und Material überprüfen, Versuchsplanung, Durchführung, Analyse

HKB b:

Alkohole: Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, Oxidationszahlen, Reduktion von Carbonylverbindungen Katalytische Hydrierung von Carbonylverbindungen, Grignard-Reaktionen, Hydrolyse von primären Halogenalkanen und Carbonsäureester, Alkanolatbildung, Veresterung, Williamsonsche Ethersynthese, Oxidation von Alkoholen, Etherbildung, Dehydratisierung von Alkoholen, Halogenalkanbildung

Ether: Nomenklatur/Physik. Eigenschaften, Sicherheitsaspekte, Kronenether, Symmetrische Ether, Gemischte Ether, Cyclische Ether

gibb

Carbonylverbindungen: Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, Keto-Enol-Tautomerie, Nachweis-Reaktionen, Oxidation von Alkoholen, Friedel-Crafts-Acylierung, Ozonolyse von Alkenen, Hydrolyse von Alkinen, Additionen von Grignard-Reagenzien, HCN, H₂, LiAlH₄ / NaBH₄, elektrophile Substitution am α-C, Oxidationen von Aldehyden

Carbonsäuren: Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, Oxidation primärer Alkohole und Aldehyde, Oxidation von Alkylaromaten, Addition von Grignard-Reagenz an CO₂, Hydrolyse von Nitrilen und Amiden, Verseifung, Derivatisierung Salzbildung, Reduktion, Decarboxylierung

Elektrochemie / Elektrodynamik: Oxidationszahlen, Redoxreaktionen, Oxidationsmittel und Reduktionsmittel, elektrochemische Spannungsreihe, Potenzialdifferenz, Galvanische Zelle, Elektrolyse, Galvanik, Korrosion, Potentiometrie, Gleichspannung und Wechselspannung, Stromstärke, Spannung und Widerstand, seriellen und parallelen Schaltungen, Gefahren im Umgang mit Elektrizität / Sicherheitsmassnahmen

Kalorik: Temperatur und Wärme, Funktionsweise von Temperaturmessgeräten, Wärmeausdehnung, Wärmekapazität, Bestimmung von Reaktionsenthalpien, Energieänderungen bei Aggregatzustandsänderungen, Arten der Wärmeausbreitung, Massnahmen zur Wärmedämmung, Gasgesetze

Thermische Trennmethoden: Phasendiagramme, Druck, Dampf, Dampfdruck, Trennung durch Gefrieren, Sublimieren und Sieden, Vakuum, Vakuumpumpe, Sicherheit, Destillation, Azeotrope Gemische

5. Semester

HKB a, e, f, g:

Biologische Systeme und Grundprinzipien / Toxikologie / GSU: molekularen Bestandteile von Zellen, Organelle, Transportvorgänge durch Membrane, Aufbau und Funktionsweise von Neuronen, Neurotransmitter, Replikation, Transkription, Translation, molekular- und biotechnologische Methoden (PCR, Gelelektrophorese, Klonieren mit rekombinanten Plasmiden, Überexprimieren von Proteinen in transgenen Organismen), Wirkungsweise von Giften, Schlüssel-Schloss-Prinzip

Vertiefung und Festigung von chemischem Rechnen: allgemeine (Mischungs- und Verdünnungsrechnungen, Statistik, Titrationen...) und arbeitsfeldbezogene Berechnungen durchführen

Methoden- und Prozessvalidierung: Sinn und Zweck, Vorgehen, Präzision (Wiederholpräzision, Laborpräzision und Vergleichspräzision), Richtigkeit und Genauigkeit, Selektivität vs. Spezifität, Wiederfindung, Bestimmungsgrenze, Robustheit

Arbeitsanweisungen, neues Gerät in SOP aufnehmen, Erarbeiten von SOP-Methoden inkl. Anleitungen: eigene Beispiele aus dem Labor und Deutsch / Englisch

HKB b:

Carbonsäurederivate: Säurehalogenide, Säureanhydride Carbonsäureester, Säureamide, Nomenklatur/Physik. Eigenschaften

Organische Stickstoffverbindungen: Amine (Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, Reduktion von Nitro-KWS, Reduktion von N-substituierten Säureamiden, Alkylierung von sekundären und tertiären Aminen), Nitroverbindungen (Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, elektrophile Substitution, stufenweise Reduktion zum Amin)

Isomerie / Stereochemie: Spiegelbildisomerie, Fischer-Projektion, R-S-Konvention, Optische Aktivität

Kohlenhydrate: Monosaccharide (Nomenklatur / Physik. Eigenschaften Chemische Eigenschaften), Semiacetalbildung, Glykosidbildung, Disaccharide, Polysaccharide

Lipide: Triglyceride, Nomenklatur/Physik. Eigenschaften Chemische Eigenschaften, Fettkennzahlen, Lipoide, Phospholipide, Isoprenoide, Steroide, Aufbau und Vorkommen, Tenside und Waschwirkung

Spektroskopie (AAS, OES, RFA, IR, NMR etc.): Emission, Transmission, Absorption, Extinktion, Anwendungsbeispiele/Einsatzgebiete, Bedeutung der elektromagnetischen Strahlung, Prinzip, Aufbau, Funktionsweise und Vergleich der behandelten Geräte / Methoden, Aufbau, Prinzip und Interpretation von einfachen ¹H- und ¹³C-NMR-Spektren.

6. Semester

HKB a, e, f, g:

Umgang mit Daten / Datenablagen / Datenschutz / Informationssicherheit: Analyse von betriebsspezifischem Umgang mit Daten, Datenablagen, Datenschutz analysieren, Systeme, um Daten effizient zu speichern, zu suchen und zu sichern, Cyber-Sicherheit (Anforderungen an Passwörter, Erkennung und Vermeidung von Phishing, Schutz vor Malware und physische Sicherheit von Geräten)

Vergleich ausgewählter Technologien und Messmethoden: allgemein analytische und nasschemische Verfahren und Methoden, elektrochemische Analysemethoden, thermische Trennmethoden, spektroskopische Methoden, chromatographische Methoden, Massenspektrometrie

gibb

Labororganisation und -instandhaltung: Entsorgung, Lagerung und Handhabung von Chemikalien, Wartung und Kalibrierung, Dokumentation, Qualitätssicherung, Einhaltung von Laborrichtlinien und -vorschriften

Projektarbeit: Theoretische Aufarbeitung der eignen Laborarbeit und Verknüpfung mit Theorie, Modellen und Konzepten, Zielformulierung und Aufgabenstellung, Zeit- und Ressourcenplanung, Fortschrittskontrolle und -dokumentation, Präsentation und Dokumentation

Informationsquellen: digitale und analoge Informationsquellen auf Korrektheit und Vertrauenswürdigkeit bewerten und beurteilen, Recherchen in Chemikalien- und Produktdatenbanken, Websites von Labormaterial und -geräte-Herstellern und gängigen Bücher

HKB b:

Proteine: Nomenklatur, physikalische und chemische Eigenschaften von Aminosäuren, Peptidbindung, Proteine, Struktur, chemische Eigenschaften

Synthetische Polymere: Nomenklatur/Physik. Eigenschaften, Thermoplaste, Duroplaste, Copolymerisate, Polymerisation, Polykondensation, Polyaddition

Automatisierung / Digitalisierung: automatisierte Pipettier- und Dosiersysteme, Roboter- und Robotiksysteme, Sensorik und Fernüberwachung (z.B. von Temperatur, Druck, pH-Wert oder Konzentrationen), virtuelle Labore und Simulationen, Laborinformationsmanagementsysteme zur Digitalisierung von Dokumentation, Datenanalyse und -verarbeitung, Archivierung

Vertiefung von eigenen Arbeitsmethoden, QV-Vorbereitungen, Repetition: individuelle und bedürfnisorientiert

Übersicht der Leistungsziele

Leistur	ngsziele gemäss Bildungsplan	Semester	Inhalt / Umsetzung
a.1.1	Sie erklären die Zielsetzung eines Laborauftrags. (K2)	5	Methoden- und Prozessvalidierung
a.1.2	Sie beschreiben biologische und physiologische Systeme und Grund- prinzipien sowie deren gezielte Beeinflussung. Sie decken Ursache und Wirkung möglicher toxischer Störfaktoren auf. (K4)	5	Biologische Systeme und Grundprinzipien / Toxi- kologie
a.1.3	Sie erläutern die Grundprinzipien des projektförmigen Arbeitens. (K2)	5 - 6	Projektarbeit, VA im ABU
a.1.4	Sie erläutern die Arbeitsschritte der Versuchsdurchführung in der örtlichen Landessprache und auf Englisch, vergleichen sie mit der Versuchsplanung und überprüfen sie auf Vollständigkeit. (K4)	1 - 6	Englischer Sprachaufbau, Methoden- und Pro- zessvalidierung, Erarbeiten von SOP-Methoden inkl. Anleitungen, kleiner praktische Projekte
a.1.5	Sie besprechen die Versuchsdurchführung in der örtlichen Landessprache und auf Englisch. (K4)	1 - 6	Deutsche und englische Fachbegriffe in allen Themen, Englischer Sprachaufbau / Grammatik
a.1.6	Sie nutzen anerkannte Informationsquellen in der örtlichen Landessprache und auf Englisch und wählen die relevanten Informationen aus. (K4)	1 - 6	Laborsicherheit, Recherchen zu Methoden, Geräten und Chemikalien
a.1.7	Sie vergleichen verschiedene Formen der Dokumentation, Datenablage und Datenauswertung hinsichtlich ihres Anwendungszwecks. (K4)	1 - 6	Dokumentation und Berechnungen in Excel, Informationsquellen
a.1.8	Sie beschreiben Stellenwert und Nutzen verschiedener Datenschutz- konzepte. (K2)	6	Einführung, Umgang mit Daten / Datenablagen / Datenschutz / Informationssicherheit
a.1.9	Sie strukturieren einen Arbeitsauftrag und leiten daraus das Vorgehen ab. (K4)	1 - 6	Kleinere praktische Projekte
a.2.1	Sie vergleichen verschiedene Versuchs- und Messmethoden und zeigen deren Einsatzmöglichkeiten auf. (K4)	1 - 6	Dichtebestimmungen, Extraktionen, Chromato- graphie, Massenspektrometrie, Spektroskopie und weitere Methoden
a.2.2	Sie zeigen die für ihre Arbeit relevanten gesetzlichen, ökologischen und ethischen Aspekte auf. (K3)	1, 3	Laborsicherheit, Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte
a.2.3	Sie führen an die Problemstellung angepasste Berechnungen durch. (K3)	1 - 6	Gehaltsberechnungen, Mischungs- und Verdün- nungsrechnungen, Stöchiometrie
a.2.4	Sie beschreiben den geplanten Versuchsablauf in der örtlichen Landes- sprache und auf Englisch. (K2)	1 - 6	Englischer Sprachaufbau / Grammatik, kleinere praktische Projekte, Deutsche und englische Fachbegriffe in allen Themen,

	raiolachechaic Benn		East antin/East anti El El atmontang Chomic
gibb			-
a.2.5	Sie überprüfen die Vollständigkeit einer Versuchsplanung in Bezug zur Zielsetzung und zur Durchführung. (K3)	4	Arbeitsabläufe, kleinere praktische Arbeiten
a.2.6	Sie beurteilen die Verlässlichkeit verschiedener Informationsquellen. (K4)	6	Informationsquellen
a.3.1	Sie erläutern die bei der Planung und Beschaffung von Laborressourcen relevanten ökonomischen und ökologischen Zusammenhänge. (K2)	5, 6	Projektarbeit, Labororganisation und -instandhal- tung, Vertiefung von eigenen Arbeitsmethoden
a.3.2	Sie beschreiben verschiedene für die Arbeitsplanung relevante Hilfsmittel und deren geeigneten Einsatz. (K2)	6	Excel, Word
a.4.1	Sie erläutern die erforderlichen gesetzlichen und betrieblichen Sicherheits- und Umweltschutzmassnahmen für Laborarbeitsplätze und -arbeitsgeräte. (K2)	3	Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte
a.4.2	Sie begründen die Notwendigkeit von Sicherheits- und Umweltschutz- massnahmen. (K2)	3	Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte
a.4.3	Sie erläutern die Anforderungen an Schutzausrüstungen und beschreiben den korrekten Einsatz. (K2)	1	Laborsicherheit
a.4.4	Sie erläutern die einzelnen Arbeitsschritte von standardisierten Arbeits- anweisungen (Standard Operating Procedure SOP) in der örtlichen Landessprache und auf Englisch. (K2)	5 - 6	Englischer Sprachaufbau, Qualitätswesen, neues Gerät in SOP aufnehmen, Erarbeiten von SOP- Methoden inkl. Anleitungen
a.4.6	Sie erläutern die Bestimmungen für den Transport von Gefahrgut im Laborbereich und leiten daraus die erforderlichen Massnahmen ab. (K3)	3	Labororganisation und -instandhaltung, Laborsi- cherheit
b.1.1	Sie begründen die Schutzmassnahmen im Umgang mit Gefahrenquellen und -stoffen und erläutern bestehende Gefahren und mögliche Konsequenzen für Mensch und Umwelt im Ereignisfall. (K4)	1 - 6	Laborsicherheit, Ökologische Systeme und Grundprinzipien, Sicherheitsmassnahmen, Entsorgungskonzepte
b.1.2	Sie beschreiben die chemischen und physikalischen Eigenschaften der verschiedenen Labormaterialien und begründen deren situationsspezifische Verwendung. (K2)	2, 6	Feststoff, Polymere
b.1.3	Sie führen spezifische Berechnungen für die Herstellung von Gebrauchslösungen und Kalibrationsreihen durch. (K3)	1 - 6	Gehaltsangaben, Mischungs- und Verdünnungs- rechnungen, Statistik
b.1.4	Sie erklären Aufbau, Funktionsweise, Messprinzip und Einsatzmöglich- keiten verschiedener Messgeräte und Sensoren, die bei der Laborarbeit eingesetzt werden. (K2)	1 - 6	Dichtebestimmungen, Temperaturmessgeräte, potentiometrische Titration, Chromatographie, Massenspektrometrie, Spektroskopie
b.1.5	Sie beschreiben die chemischen und physikalischen Eigenschaften von Chemikalien, Substanzen, Lösungen, Stoffen und Stoffgemischen. (K2)	1 - 6	Ordnungssysteme der Materie, Radioaktivität, chemische Bindungen, zwischenmolekulare

gibb			
			Kräfte, Lösungen, Feststoffe, Säuren/ Basen, Stoffklassen der OC
b.1.6	Sie benennen mögliche Gefahren und leiten geeignete Massnahmen ab. (K2)	1, 3	Laborsicherheit, Ökologische Systeme und Grundprinzipen, Sicherheitsmassnahmen, Entsorgungskonzepte
b.1.7	Sie erfassen Daten, strukturieren sie und stellen sie in geeigneter Weise dar. (K3)	3	Berechnungen und Statistik mit Excel
b.1.8	Sie wenden geeignete Massnahmen zum Schutz von Daten an. (K3)	1, 3, 6	Einführung, Sicherheitsmassnahmen, Umgang mit Daten / Datenablagen / Datenschutz / Informationssicherheit
b.1.9	Sie erläutern die spezifischen Anforderungen an verschiedenartiges Lagergut im Laborumfeld. (K2)	3	Sicherheitsmassnahmen, Entsorgungskonzepte
b.3.1	Sie erläutern die korrekte Probenahme und deren Relevanz in Bezug auf das Untersuchungsergebnis. (K2)	1, 3	Umgang mit Fluiden, Extraktionen, Chromatogra- phie
b.3.2	Sie beschreiben, vergleichen und kategorisieren den Aufbau und die Besonderheiten ihrer Arbeitsobjekte und stellen diese dar. (K2)	1 - 6	Ordnungssysteme der Materie, chemische Bindungen, chemische Bindungen, zwischenmolekulare Kräfte, Lösungen, Feststoffe
b.3.3	Sie beschreiben die Techniken und die korrekte Anwendung der Hilfsmittel für die Aufbereitung von Proben im Labor. (K2)	3, 6	Extraktionen, Chromatographie, Massenspektrometrie, Vertiefung von eigenen Arbeitsmethoden
b.3.4	Sie begründen die laborspezifischen Massnahmen in den Bereichen Arbeitshygiene, Gesundheits- und Umweltschutz (GSU) sowie hinsichtlich des Umgangs mit Gefahrgut. (K2)	1, 3, 6	Laborsicherheit, Sicherheitsmassnahmen, Entsorgungskonzepte, Labororganisation und -instandhaltung, Sicherheitsmassnahmen, Vertiefung von eigenen Arbeitsmethoden
b.3.5	Sie erläutern die Grundlagen und Eigenschaften der Stoffklassen und deren Reaktivität und leiten daraus die erforderlichen Konsequenzen für die Arbeit und Entsorgung im Labor ab. (K4)	1 - 4	Ordnungssysteme der Materie, chemische Bindungen, Stoffklassen der organischen Chemie, Sicherheitsmassnahmen, Entsorgungskonzepte
b.4.2	Sie setzen geeignete Standardprogramme für die Dokumentation ein. (K3)	1 - 6	Office (Excel, Word, PowerPoint)
b.4.4	Sie legen Daten und Informationen in geeigneten Formaten für die Aufbereitung und Weiterverwendung sicher ab. (K3)	1 - 6	Lernjournal z.B. auf OneNote, Ordnerstruktur auf PC, LMS
b.5.1	Sie vergleichen Daten und Informationen mit Referenzwerten, ermitteln Tendenzen und leiten daraus Massnahmen ab. (K4)	3	Statistik, Berechnungen zur Chromatographie
b.5.2	Sie leiten Daten und Informationen in geeigneter Form weiter. (K3)	1 - 6	Office (Excel, Word, PowerPoint), Outlook

Arbeitsanweisungen, kleinere praktische Arbeiten

Fachbegriffe in allen Themen

1 - 6

gründete Massnahmen ab. (K5)

Sie formulieren Vorschläge für Verbesserungen aus und kommunizie-

ren diese in der örtlichen Landessprache und auf Englisch. (K5)

f.1.3